Abstract

• Alternative strategies for the dark assimilation of ammonium and nitrate into microalgae are explored using a mechanistic model of algal physiology. • The standard diatom strategy, continuation of N assimilation at high rates in darkness as long as reserve C remains, is the most advantageous. The flagellate strategy, incorporating ammonium but not nitrate at a reasonable rate in darkness, is best suited to organisms with high metabolic costs, inhabiting waters with relatively high concentrations of ammonium. The strategy of vertically migrating diatoms - accumulation of nitrate in internal pools for assimilation after return to the photic zone - is best suited to slow-growing cells in low-ammonium environments. • Differences between the strategies become less significant with increasing N-source limitation (the situation more typically encountered by flagellates and migratory species) because transport rather than post-transport assimilatory processes become most limiting. • It is suggested that optimization of dark N-assimilation is not a critical selective feature; organisms with contrasting abilities in this regard usually inhabit different water bodies and have other more fundamental phenotypic differences (e.g. motility or silicon requirements).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.