Abstract

Research on more productive and sustainable sugarcane production systems would be aided by a comprehensive simulator of the sugarcane crop that is cognisant of a broader crop-soil-management system. A sugarcane crop model is described that can be deployed in the APSIM framework for agricultural systems simulation. The model operates on a daily time step, grows a leaf canopy, uses intercepted radiation to produce assimilate, and partitions this assimilate into leaf, structural stalk and sugar. The crop physiological processes represented in the model respond to the radiation and temperature environment and are sensitive to water and nitrogen supply. The model simulates growth, water use, N accumulation, sugar dry weight and fresh cane yield for plant and ratoon crops in response to climate, soil, management and genotypic factors. The model was developed on 35 datasets from Australia, Hawaii, South Africa and Swaziland, covering a wide range of crop classes, latitudes, water regimes and nitrogen supply conditions. Coefficients of determination for model predictions compared to observed data included 0.79 for LAI, 0.93 for crop biomass, 0.83 for stalk sucrose and 0.86 for N accumulation in above ground tissues. The particular strengths of this model are discussed in the context of agricultural systems simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call