Abstract
In this paper we combine computer vision and data mining techniques to model high-level concepts for image retrieval, on the basis of basic perceptual features of the human visual system. High-level concepts related to these features are learned and represented by means of a set of fuzzy association rules. The concepts so acquired can be used for image retrieval with the advantage that it is not needed to provide an image as a query. Instead, a query is formulated by using the labels that identify the learned concepts as search terms, and the retrieval process calculates the relevance of an image to the query by an inference mechanism. An additional feature of our methodology is that it can capture user’s subjectivity. For that purpose, fuzzy sets theory is employed to measure user’s assessments about the fulfillment of a concept by an image.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.