Abstract

This paper presents a modelling study of the electrochemical hydrogen oxidation reaction at nickel/yttria-stabilized zirconia (Ni/YSZ) patterned anodes. An elementary kinetic reaction-diffusion model accounts for coupled heterogeneous chemistry and transport on the Ni and YSZ surfaces. Charge transfer is modeled as a spillover of adsorbates between the Ni and YSZ surfaces at the three-phase boundary (TPB). No a priori assumptions on rate-determining processes are made. Thermodynamic, kinetic, and transport parameters are compiled from various literature sources serving as a base for quantitative simulations. Seven different spillover reaction pathways of the hydrogen oxidation reaction are compared to experimental patterned anode data obtained previously by Bieberle et al. [ J. Electrochem. Soc. , 148 , A646 (2001)] under a range of operating conditions. Only one reaction pathway, based on two hydrogen spillover reactions, is able to describe consistently the complete experimental data set. A sensitivity analysis for this case allows identification of rate-determining processes. Surface concentrations close to the TPB are predicted to differ from the concentration derived from thermodynamical equilibrium by up to 2 orders of magnitude. The simulation results and the validity of the model are critically discussed. Directions for future theoretical and experimental studies for elucidating the mechanistic details of Ni/YSZ anodes are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.