Abstract

During the last years aero-engines are progressively evolving toward design concepts that permit improvements in terms of engine safety, fuel economy and pollutant emissions. With the aim of satisfying the strict NOx reduction targets imposed by ICAO-CAEP, lean burn technology is one of the most promising solutions even if it must face safety concerns and technical issues. Hence a depth insight on lean burn combustion is required and Computational Fluid Dynamics (CFD) can be a useful tool for this purpose. In this work a comparison in Large-Eddy Simulation (LES) framework of two widely employed combustion approaches like the Artificially Thickened Flame (ATF) and the Flamelet Generated Manifold (FGM) is performed using ANSYS® Fluent v16.2. Two literature test cases with increasing complexity in terms of geometry, flow field and operating conditions are considered. Firstly, capabilities of FGM are evaluated on a single swirler burner operating at ambient pressure with a standard pressure atomizer for spray injection. Then a second test case, operated at 4 bar, is simulated. Here kerosene fuel is burned after an injection through a prefilming airblast atomizer within a co-rotating double swirler. Obtained comparisons with experimental results show the different capabilities of ATF and FGM in modelling the partially-premixed behaviour of the flame and provides an overview of the main strengths and limitations of the modelling strategies under investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call