Abstract

The brain-inspired spiking neural network (SNN) computing paradigm offers the potential for low-power and scalable computing, suited to many intelligent tasks that conventional computational systems find difficult. On the other hand, NoC (network-on-chips) based very large scale integration (VLSI) systems have been widely used to mimic neurobiological architectures (including SNNs). This paper proposes an evaluation methodology for SNN applications from the aspect of micro-architecture. First, we extract accurate SNN models from existing simulators of neural systems. Second, a cycle-accurate NoC simulator is implemented to execute the aforementioned SNN applications to get timing and energyconsumption information. We believe this method not only benefits the exploration of NoC design space but also bridges the gap between applications (especially those from the neuroscientists’ community) and neuromorphic hardware. Based on the method, we have evaluated some typical SNNs in terms of timing and energy. The method is valuable for the development of neuromorphic hardware and applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.