Abstract

Predicting lithium-ion battery (LIB) lifetime is one of the most important challenges holding back the electrification of vehicles, aviation, and the grid. The continuous growth of the solid-electrolyte interface (SEI) is widely accepted as the dominant degradation mechanism for LIBs. SEI growth consumes cyclable lithium and leads to capacity fade and power fade via several pathways. However, SEI growth also consumes electrolyte solvent and may lead to electrolyte dry-out, which has only been modelled in a few papers. These papers showed that the electrolyte dry-out induced a positive feedback loop between loss of active material (LAM) and SEI growth due to the increased interfacial current density, which resulted in capacity drop. This work, however, shows a negative feedback loop between LAM and SEI growth due to the reduced solvent concentration (in our case, EC), which slows down SEI growth. We also show that adding extra electrolyte into LIBs at the beginning of life can greatly improve their service life. This study provides new insights into the degradation of LIBs and a tool for cell developers to design longer lasting batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.