Abstract

The transition region between closed and open magnetic flux surfaces plays a crucial role for tokamak performances. Appropriate understanding of the edge region remains a major challenge owing to several open issues as momentum transport, turbulence overshoot or neutral penetration. We consider here a transport model system to investigate the propagation of parallel momentum from the SOL into the core plasma and vice-versa. The numerical results show that for small values of the radial diffusion coefficient, the density profile decays exponentially from the core to the SOL as predicted by 1D analytical solution. A spreading of the parallel momentum from the SOL to the core is observed, with the presence of non-zero velocities also in the regions far from the SOL. The effect of an imposed rotation of the core plasma is investigated as well as the dynamics of an overdensity imposed in the core plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.