Abstract

Accurate estimation of soil temperature (Ts) at a national scale under different climatic conditions is important for soil–plant–atmosphere interactions. This study estimated daily Ts at the 0 cm depth for 689 meteorological stations in seven different climate zones of China for the period 1966–2015 with the M5P model tree (M5P), random forests (RF), and the extreme gradient boosting (XGBoost). The results showed that the XGBoost model (averaged coefficient of determination (R2) = 0.964 and root mean square error (RMSE) = 2.066 °C) overall performed better than the RF (averaged R2 = 0.959 and RMSE = 2.130 °C) and M5P (averaged R2 = 0.954 and RMSE = 2.280 °C) models for estimating Ts with higher computational efficiency. With the combination of mean air temperature (Tmean) and global solar radiation (Rs) as inputs, the estimating accuracy of the models was considerably high (averaged R2 = 0.96–0.97 and RMSE = 1.73–1.99 °C). On the basis of Tmean, adding Rs to the model input had a greater degree of influence on model estimating accuracy than adding other climatic factors to the input. Principal component analysis indicated that soil organic matter, soil water content, Tmean, relative humidity (RH), Rs, and wind speed (U2) are the main factors that cause errors in estimating Ts, and the total error interpretation rate was 97.9%. Overall, XGBoost would be a suitable algorithm for estimating Ts in different climate zones of China, and the combination of Tmean and Rs as model inputs would be more practical than other input combinations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.