Abstract
The combined effects of changes in climate and land use and land cover can lead to a decrease in soil organic carbon, potentially affecting soil fertility and agricultural output. The study aimed to evaluate the dynamics of soil organic carbon under various extreme climate and land use and land cover scenarios. The data on land use types and extreme climate indices between 2015 and 2070 were, respectively, sourced from the IPCC and the European Copernicus Climate Change Service webpages. The 2015 baseline data for soil organic carbon was obtained from the African Soil Information Service's website. Data quality control and model validation were conducted to ensure the reliability of the collected data and the predictive model. A generalized regression model was chosen for its accuracy and reliability in predicting soil organic carbon dynamics under different shared socio-economic pathways such as SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. The study revealed that variations in extreme climate and land use patterns significantly influenced the organic carbon content of the soil. Increased dry days and the conversion of forest and grassland into farmland resulted in a drop in soil organic carbon, while increased wet days and warming temperatures significantly increase it under each scenario. The soil organic carbon content increased by 5.82 and 2.8 g/kg for the SSP1-2.6 and SSP2-4.5 scenarios, respectively, but decreased by 6.90 g/kg under the SSP5-8.5 scenario. Overall, the higher emission scenarios had a significant negative impact on soil organic carbon levels, while the low emission scenarios had a positive impact. Sustainable land management practices are crucial for preserving and managing soil organic carbon levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.