Abstract

Studying phenomena that follow a skewed distribution and entail an extremal behaviour is important in many disciplines. How to describe and model the dependence of skewed spatial random fields is still a challenging question. Especially when one is interested in interpolating a sample from a spatial random field that exhibits extreme events, classical geostatistical tools like kriging relying on the Gaussian assumption fail in reproducing the extremes. Originating from the multivariate extreme value theory partly driven by financial mathematics, copulas emerged in recent years being capable of describing different kinds of joint tail behaviours beyond the Gaussian realm. In this paper spatial vine copulas are introduced that are parametrized by distance and allow to include extremal behaviour of a spatial random field. The newly introduced distributions are fitted to the widely studied emergency and routine scenario data set from the spatial interpolation comparison 2004 (SIC2004). The presented spatial vine copula ranks within the top 5 approaches and is superior to all approaches in terms of the mean absolute error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.