Abstract
The normal distribution is inadequate in capturing skewed and heavy-tailed behaviour of data taken over short time intervals. In addition the data can be leptokurtic. For this reason a normal weighted inverse Gaussian distribution is proposed as an alternative to the normal inverse Gaussian distribution to handle such data. The mixing distribution used in the normal variance mean mixture is a finite mixture of two special cases of Generalized Inverse Gaussian \((\textit{GIG})\) distribution. The two special cases and the finite mixture are weighted inverse Gaussian distribution. The motivation for this work is that a finite mixture is more flexible than a single/standard distribution. The \(textit{EM}\)-algorithm has been used for parameter estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.