Abstract

The addition of 1.5–2 wt% Si is a commonly used alloying approach for TRIP steels. Si delays cementite precipitation during bainite transformation thereby enabling that an adequate amount of austenite can be retained at room temperature due to sufficient carbon enrichment. However, the degree of cementite prevention and thus the fraction of retained austenite depend on the employed processing parameters and steel chemistry. The present work proposes a modelling framework to quantify the delayed carbide precipitation during bainite formation. A nucleation-growth based model describes the simultaneous formation of bainitic ferrite and cementite precipitation for various continuous cooling scenarios. The retarding effect of Si on cementite precipitation is explicitly accounted for. The fraction of bainite and the carbon content of the remaining austenite, which determines the Ms temperature of remaining austenite, can be tracked along non-isothermal processing paths. The proposed model is evaluated using continuous cooling transformation data for a 0.19C–1.5Mn–1.6Si–0.2Mo (wt%) steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.