Abstract
Metabolomics is the study of the complement of small molecule metabolites in cells, biofluids and tissues. Many metabolomic experiments are designed to compare changes observed over time under two or more experimental conditions (e.g. a control and drug-treated group), thus producing time course data. Models from traditional time series analysis are often unsuitable because, by design, only very few time points are available and there are a high number of missing values. We propose a functional data analysis approach for modelling short time series arising in metabolomic studies which overcomes these obstacles. Our model assumes that each observed time series is a smooth random curve, and we propose a statistical approach for inferring this curve from repeated measurements taken on the experimental units. A test statistic for detecting differences between temporal profiles associated with two experimental conditions is then presented. The methodology has been applied to NMR spectroscopy data collected in a pre-clinical toxicology study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.