Abstract

SUMMARYQuasi‐static cyclic tests on reinforced concrete (RC) walls have shown that shear deformations can constitute a significant ratio of the total deformations when the wall is loaded beyond the elastic regime. For slender RC walls that form a stable flexural mechanism, the ratio of shear to flexural deformations remains approximately constant over the entire range of imposed displacement ductilities. This paper proposes a method for incorporating shear‐flexure interaction effects in equivalent frame models of slender RC walls by coupling the shear force‐shear strain relationship to the curvature and axial strain in the member. The suggested methodology is incorporated in a finite element consisting of two interacting spread inelasticity sub‐elements representing flexural and shear response, respectively. The element is implemented in the general finite element code IDARC and validated against experimental results of RC cantilever walls. In a second step, it is applied in inelastic static and dynamic analyses of tall wall and wall‐frame systems. It is shown that ignoring shear‐flexure interaction may lead to erroneous predictions in particular of local ductility and storey drift demands. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call