Abstract

The behavior of semiflexible polymers and filaments is governed by their bending energy. The corresponding bending rigidity gives rise to material properties that are distinct from those of flexible polymers governed by entropy. In particular, bending rigidity plays an important role for the shapes of these polymers and their ability to withstand and transmit forces. Recent theoretical studies and modelling approaches are briefly reviewed and used for a systematic analysis of shapes of adsorbed semiflexible polymers and buckling instabilities. Semiflexible polymers and filaments exhibit a buckling instability which is modified by thermal fluctuations and provides upper bounds on the generation of polymerization forces. Growing bundles of polymers or filaments can generate force via adhesive interactions. The latter mechanism remains effective even after single filaments have attained a buckled state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call