Abstract
Severe acute respiratory syndrome virus 2 (SARS-CoV-2), likely a bat-origin coronavirus, spilled over from wildlife to humans in China in late 2019, manifesting as a respiratory disease. Coronavirus disease 2019 (COVID-19) spread initially within China and then globally, resulting in a pandemic. This article describes predictive modelling of COVID-19 in general, and efforts within the Public Health Agency of Canada to model the effects of non-pharmaceutical interventions (NPIs) on transmission of SARS-CoV-2 in the Canadian population to support public health decisions. The broad objectives of two modelling approaches, 1) an agent-based model and 2) a deterministic compartmental model, are described and a synopsis of studies is illustrated using a model developed in Analytica 5.3 software. Without intervention, more than 70% of the Canadian population may become infected. Non-pharmaceutical interventions, applied with an intensity insufficient to cause the epidemic to die out, reduce the attack rate to 50% or less, and the epidemic is longer with a lower peak. If NPIs are lifted early, the epidemic may rebound, resulting in high percentages (more than 70%) of the population affected. If NPIs are applied with intensity high enough to cause the epidemic to die out, the attack rate can be reduced to between 1% and 25% of the population. Applying NPIs with intensity high enough to cause the epidemic to die out would seem to be the preferred choice. Lifting disruptive NPIs such as shut-downs must be accompanied by enhancements to other NPIs to prevent new introductions and to identify and control any new transmission chains.
Highlights
AffiliationsIn this article, we review efforts within the Public Health Agency of Canada (PHAC) to model transmission of severe acute respiratory syndrome virus 2 (SARS-CoV-2), the agent of coronavirus disease 2019 (COVID-19), to support public health decisions
This article describes predictive modelling of COVID-19 in general, and efforts within the Public Health Agency of Canada to model the effects of non-pharmaceutical interventions (NPIs) on transmission of SARS-CoV-2 in the Canadian population to support public health decisions
Non-pharmaceutical interventions, applied with an intensity insufficient to cause the epidemic to die out, reduce the attack rate to 50% or less, and the epidemic is longer with a lower peak
Summary
Severe acute respiratory syndrome virus 2 (SARS-CoV-2), likely a bat-origin coronavirus, spilled over from wildlife to humans in China in late 2019, manifesting as a respiratory disease. Coronavirus disease 2019 (COVID-19) spread initially within China and globally, resulting in a pandemic
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.