Abstract

A common feature that stimulates modelling efforts across the various physical sciences is that complex microscopic behaviour underlies apparently simple macroscopic effects. Mathematical formulations attempt to capture the initial and evolving microstructural entities either implicitly or explicitly and link their effects to measurable macroscopic variables such as load or stress by averaging out any microscopic fluctuations. The implicit formulations that ignore the inherent spatial heterogeneity in the deforming domain form the basis of constitutive models for input to finite element (FE) systems. On the other hand, explicit formulations to capture and link microstructural entities rely on narrowing down the size of each finite element, thereby increasing the number of finite elements in the deforming domain, an effect accompanied by a rapid growth in computational time. The model described here, Cellular Automata based Finite Elements (CAFE), utilises the Cellular Automata technique to represent initial and evolving microstructural features (e.g., dislocation densities, grain sizes, etc.) in C-Mn steels at an appropriate length scale by linking the macro-scale process variables obtained using an overlying finite element mesh. Differences will be illustrated between single and two-pass hot rolling experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.