Abstract

In this paper we study the dynamics of an ensemble of nitrogen-vacancy centers in diamond when its photoluminescence is detected by means of a widefield imaging system. We develop a seven-level model and use it to simulate the widefield detection of nitrogen-vacancy centers Rabi oscillations. The simulation results are compared with experimental measurements showing a good agreement. In particular, we use the model to explain the asymmetric shape of the detected Rabi oscillations due to an incomplete repolarization of the nitrogen-vacancy center during the pulse sequence implemented for the detection of Rabi oscillations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.