Abstract
ABSTRACT Reviewing the toxicological literature for over the past decades, the key elements of QSAR modelling have been the mechanisms of toxic action and chemical classes. As a result, it is often hard to design an acceptable single model for a particular endpoint without clustering compounds. The main aim here was to develop a Pass-Pass Quantitative Structure-Activity-Activity Relationship (PP QSAAR) model for direct prediction of the toxicity of a larger set of compounds, combing the application of an already predicted model for another species, and molecular descriptors. We investigated a large acute toxicity data set of five aquatic organisms, fish, Daphnia magna, and algae from the VEGA-Hub, as well as Tetrahymena pyriformis and Vibrio fischeri. The statistical quality of the models encouraged us to consider this alternative for the prediction of toxicity using interspecies extrapolation QSAAR models without regard to the toxicity mechanism or chemical class. In the case of algae, the use of activity values from a second species did not improve the models. This can be attributed to the weak interspecies relationships, due to different aquatic toxicity mechanisms in species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.