Abstract

The manufacture of non-crimp fabric composites typically requires the forming and consolidation of the reinforcement material. During this process the material is subjected to complex loading where the coupling of tensile, bending, shear and compressive forces result in deformations to the internal architecture of the textile. To determine the extent of these deformations a numerical modelling method has been developed to capture the kinematic behaviour of non-crimp fabric textiles. This method focuses on capturing the interactions between the fibrous tows and the stitch yarns which bind the tows together. Through modelling at a level of detail in which the meso-scale interactions are explicitly present, the macro-scale behaviour of the material proceeds naturally within the model, negating any requirement for detailed characterisation of the physical material. This also enables a detailed description of the internal architecture of the deformed fabric to be extracted for analysis or further modelling. The present study explores the method's ability to capture both local and global deformations which occur in non-crimp fabrics, specifically to capture the onset of deformations that appear due to tow-stitch interactions and the forming and compaction of multiple layers. Comparison with experimental results show good agreement for both meso-scale deformations, resulting from multi-layer compaction, and global in-plane shear deformations induced through forming over complex tooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.