Abstract
Quantitative models of crown structure have been developed for several conifer species, but these studies have rarely simultaneously fit the models across multiple species. This study used extensive crown structure data for the five primary conifer species in Maine to test for species differences in maximum branch diameter profile, branch density, and relative branch diameter distribution. The species included balsam fir [ Abies balsamea (L.) Mill], northern white-cedar [ Thuja occidentalis (L.)], eastern hemlock [ Tsuga canadensis (L.) Carr.], eastern white pine [ Pinus strobus (L.)], and red spruce [ Picea rubens (Sarg.)]. After accounting for key covariates, significant species differences were found in all crown structural attributes examined in this study. Profiles for the mean tree indicated that northern white-cedar had the smallest maximum branch diameters throughout the crown and white pine had the largest, except near the base of the crown where the species switched in rank. The density of live branches in a crown had the widest range of variation of the examined crown structural attributes. Red spruce had a significantly higher density of primary branches than the other conifers, particularly in the upper crown. The relative branch diameter distribution indicated that balsam fir had a distribution more skewed towards larger relative branch sizes, while eastern hemlock and red spruce had distributions shifted towards smaller relative branches. This study highlights the range of variability in key crown structural attributes due to inherent species differences, but indicates that models fit across multiple species can perform quite well as the amount of explained variation was relatively high.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.