Abstract

In this research, an effort has been put to develop an integrated predictive modeling framework to automatically estimate the rental price of Airbnb units based on listed descriptions and several accommodation-related utilities. This paper considers approximately 0.2 million listings of Airbnb units across seven European cities, Amsterdam, Barcelona, Brussels, Geneva, Istanbul, London, and Milan, after the COVID-19 pandemic for predictive analysis. RoBERTa, a transfer learning framework in conjunction with [Formula: see text]-means-based unsupervised text clustering, was used to form a homogeneous grouping of Airbnb units across the cities. Subsequently, particle swarm optimization (PSO) driven advanced ensemble machine learning frameworks have been utilized for predicting rental prices across the formed clusters of respective cities using 32 offer-related features. Additionally, explainable artificial intelligence (AI), an emerging field of AI, has been utilized to interpret the high-end predictive modeling to infer deeper insights into the nature and direction of influence of explanatory features on rental prices at respective locations. The rental prices of Airbnb units in Geneva and Brussels have appeared to be highly predictable, while the units in London and Milan have been found to be less predictable. Different types of amenity offerings largely explain the variation in rental prices across the cities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.