Abstract

BackgroundNon-alcoholic fatty liver disease (NAFLD) is the most prevalent cause of chronic hepatic disease and results in non-alcoholic steatohepatitis (NASH), which progresses to fibrosis and cirrhosis. Although the Leptin deficient rodent models are widely used in study of metabolic syndrome and obesity, they fail to develop liver injuries as in patients.MethodsDue to the high similarity with humans, we generated Leptin-deficient (Leptin−/−) pigs to investigate the mechanisms and clinical trials of obesity and NAFLD caused by Leptin.ResultsThe Leptin−/− pigs showed increased body fat and significant insulin resistance at the age of 12 months. Moreover, Leptin−/− pig developed fatty liver, non-alcoholic steatohepatitis and hepatic fibrosis with age. Absence of Leptin in pig reduced the phosphorylation of JAK2-STAT3 and AMPK. The inactivation of JAK2-STAT3 and AMPK enhanced fatty acid β-oxidation and leaded to mitochondrial autophagy respectively, and both contributed to increased oxidative stress in liver cells. In contrast with Leptin−/− pig, although Leptin deletion in rat liver inhibited JAK2-STAT3 phosphorylation, the activation of AMPK pathway might prevent liver injury. Therefore, β-oxidation, mitochondrial autophagy and hepatic fibrosis did not occurred in Leptin−/− rat livers.ConclusionsThe Leptin-deficient pigs presents an ideal model to illustrate the full spectrum of human NAFLD. The activity of AMPK signaling pathway suggests a potential target to develop new strategy for the diagnosis and treatment of NAFLD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.