Abstract
A survey of recent contributions on three-dimensional grain-scale mechanical modelling of polycrystalline materials is given in this work. The analysis of material micro-structures requires the generation of reliable micro-morphologies and affordable computational meshes as well as the description of the mechanical behavior of the elementary constituents and their interactions. The polycrystalline microstructure is characterized by the topology, morphology and crystallographic orientations of the individual grains and by the grain interfaces and microstructural defects, within the bulk grains and at the inter-granular interfaces. Their analysis has been until recently restricted to two-dimensional cases, due to high computational requirements. In the last decade, however, the wider affordability of increased computational capability has promoted the development of fully three-dimensional models. In this work, different aspects involved in the grain-scale analysis of polycrystalline materials are considered. Different techniques for generating artificial micro-structures, ranging from highly idealized to experimentally based high-fidelity representations, are briefly reviewed. Structured and unstructured meshes are discussed. The main strategies for constitutive modelling of individual bulk grains and inter-granular interfaces are introduced. Some attention has also been devoted to three-dimensional multiscale approaches and some established and emerging applications have been discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.