Abstract

Grain yield improvement in globally important staple crops is critical in the coming decades if production is to keep pace with growing demand; so there is increasing interest in understanding and manipulating plant growth and developmental traits for better crop productivity. However, this is confounded by complex cross-scale feedback regulations and a limited ability to evaluate the consequences of manipulation on crop production. Plant/crop modelling could hold the key to deepening our understanding of dynamic trait-crop-environment interactions and predictive capabilities for supporting genetic manipulation. Using photosynthesis and crop growth as an example, this review summarises past and present experimental and modelling work, bringing about a model-guided crop improvement thrust, encompassing research into: (1) advancing cross-scale plant/crop modelling that connects across biological scales of organisation using a trait dissection-integration modelling principle; (2) improving the reliability of predicted molecular-trait-crop-environment system dynamics with experimental validation; and (3) innovative model application in synergy with cross-scale experimentation to evaluate G×M×E and predict yield outcomes of genetic intervention (or lack of it) for strategising further molecular and breeding efforts. The possible future roles of cross-scale plant/crop modelling in maximising crop improvement are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.