Abstract

Research into vertical farms or plant factories is steadily increasing over the years, as the demand for sustainable food production and a shift to more environmental friendly food production is occurring. Modelling plant climate in these confined spaces is therefore essential to guarantee optimal growing conditions. Modelling of plant climate has already been done in greenhouses, but at length scales much bigger than individual leaves. In this study, one single plant will be modelled, using computational fluid dynamics and by incorporating additional source terms in the relevant transport equations. Plants are modelled using the big leaf approach, where a plant is modelled as one artificial leaf. Water vapour flux in plants is controlled by two resistances in series, the aerodynamic resistance, which is a function of the boundary layer around the leaves and the stomatal resistance, which is the resistance against water vapour transport in leaves. Two different plants are studied, impatiens pot plant and basil plants. Values of stomatal resistance for these crops are obtained from literature or were measured. Evapotranspiration was compared with the Penman-Monteith equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.