Abstract

Kirigami metamaterials dramatically change their shape through a coordinated motion of nearly rigid panels and flexible slits. Here, we study a model system for mechanism-based planar kirigami featuring periodic patterns of quadrilateral panels and rhombi slits, with the goal of predicting their engineering scale response to a broad range of loads. We develop a generalized continuum model based on the kirigami’s effective (cell-averaged) nonlinear deformation, along with its slit actuation and gradients thereof. The model accounts for three sources of elasticity: a strong preference for the effective fields to match those of a local mechanism, inter-panel stresses arising from gradients in slit actuation, and distributed hinge bending. We provide a finite-element formulation of this model and implement it using the commercial software Abaqus. Simulations of the model agree quantitatively with experiments across designs and loading conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call