Abstract

BackgroundBrain pericytes ensheathe the endothelium and contribute to formation and maintenance of the blood–brain-barrier. Additionally, pericytes are involved in several aspects of the CNS immune response including scarring, adhesion molecule expression, chemokine secretion, and phagocytosis. In vitro cultures are routinely used to investigate these functions of brain pericytes, however, these are highly plastic cells and can display differing phenotypes and functional responses depending on their culture conditions. Here we sought to investigate how two commonly used culture media, high serum containing DMEM/F12 and low serum containing Pericyte Medium (ScienCell), altered the phenotype of human brain pericytes and neuroinflammatory responses.MethodsPericytes were isolated from adult human brain biopsy tissue and cultured in DMEM/F12 (D-pericytes) or Pericyte Medium (P-pericytes). Immunocytochemistry, qRT-PCR, and EdU incorporation were used to determine how this altered their basal phenotype, including the expression of pericyte markers, proliferation, and cell morphology. To determine whether culture media altered the inflammatory response in human brain pericytes, immunocytochemistry, qRT-PCR, cytometric bead arrays, and flow cytometry were used to investigate transcription factor induction, chemokine secretion, adhesion molecule expression, migration, phagocytosis, and response to inflammatory-related growth factors.ResultsP-pericytes displayed elevated proliferation and a distinct bipolar morphology compared to D-pericytes. Additionally, P-pericytes displayed lower expression of pericyte-associated markers NG2, PDGFRβ, and fibronectin, with notably lower αSMA, CD146, P4H and desmin, and higher Col-IV expression. Nuclear NF-kB translocation in response to IL-1β stimulation was observed in both cultures, however, P-pericytes displayed elevated expression of the transcription factor C/EBPδ, and lower expression of the adhesion molecule ICAM-1. P-pericytes displayed elevated phagocytic and migratory ability. Both cultures responded similarly to stimulation by the growth factors TGFβ1 and PDGF-BB.ConclusionsDespite differences in their phenotype and magnitude of response, both P-pericytes and D-pericytes responded similarly to all examined functions, indicating that the neuroinflammatory phenotype of these cells is robust to culture conditions.

Highlights

  • Brain pericytes ensheathe the endothelium and contribute to formation and maintenance of the blood–brain-barrier

  • Cells were grown until confluent (1–2 weeks) in Dulbecco’s Modified Eagle’s Medium (DMEM)/ F12, 10% fetal bovine serum (FBS), and 1% PSG at which point they were harvested with 0.25% Trypsin-1 mM ethylenediaminetetraacetic acid (EDTA; Gibco) and gentle scraping using a rubber scraper (Falcon, MA, USA)

  • In general, ~ 10% CD45-positive microglia, ~ 5% GFAPpositive astrocytes, and 85% PDGFRβ-positive pericytes were observed in passage two cultures [40]

Read more

Summary

Introduction

Brain pericytes ensheathe the endothelium and contribute to formation and maintenance of the blood–brain-barrier. The adult human brain contributes about 2% of an individual’s total body weight, yet receives 15–20% of the total blood supply. To meet these enormous energy demands, the brain contains an extensive vascular network. Brain vasculature has developed to include a highly selective permeability barrier termed the blood–brain barrier (BBB). This barrier is essential in segregating the central nervous system (CNS) from circulating blood and allows for the passage of numerous factors essential for correct cerebral functioning, whilst preventing the entry of potentially neurotoxic substances [1]. Together with neurons and perivascular microglia, this structure is collectively termed the neurovascular unit [2]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call