Abstract
<p>Diffuse pollution of phosphorus (P) from agriculture is a major pressure on water quality in Ireland. The Agricultural Catchments Programme (ACP) was initiated to evaluate the Good Agricultural Practice measures implemented under the EU Nitrates Directive. Within the ACP, extensive monitoring and research has been made to understand the drivers and controls on nutrient loss in the agricultural landscape. However, tapering P pollution in agricultural catchments also requires informed decisions about the likely effectiveness of measures as well as their spatial targeting.  There is a need to develop Decision Support Tools (DST) that can account for the uncertainty inherently present in both data and water quality models.</p><p>Bayesian Belief Networks (BBNs) are probabilistic graphical models that allow the integration of both quantitative and qualitative information from different sources (experimental data, model outputs and expert opinion) all in one model. Moreover, these models can be easily updated with new knowledge and can be applied with scarce datasets. BBNs have previously been used in multiple decision-making settings to understand causal relationships in different contexts. Recently, BBNs were used to support ecological risk-based decision making.</p><p>In this study, a prototype BBN was implemented with the Genie software to develop a DST for understanding the influence of land management and P pollution risk in four ACP catchments dominated by intensively farmed land with contrasting hydrology and land use. In the fist stage of the study, the spatial BBN was constructed visualising the ‘source-mobilisation-transport-continuum’, identifying the main drivers of P pollution based on previous findings from the ACP catchments. A second step involved the consultation of experts and stakeholders through a series of workshops aimed at eliciting their input. These stakeholders have expertise ranging from hydrology and hydrochemistry, land management and farm consulting, to policy and environmental modelling.</p><p>At present, the BBN is being parameterized for a 12km<sup>2</sup> catchment with mostly grassland on poorly drained soils, using a high temporal and spatial resolution dataset that includes hydro-chemo-metrics, mapped soil properties (drainage class and Soil Morgan P), landscape characteristics (i.e. land use and management, presence of mitigation measures and presence of point pollution sources). Preliminary results show that the model captures the difference in P loss risk between catchments, probably caused by contrasting hydrological characteristics and soil P sources.</p><p>Future research will be focussed on parameterizing and testing the BBN in three other ACP catchments. Such parametrization will be pivotal to testing the model in data sparse catchments and possibly upscaling the tool to regional and national scale. Moreover, climate change and land use change modelled scenarios will be crucial to inform targeting of mitigation measures.  </p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.