Abstract

Plasticating single-screw extrusion involves the continuous conversion of loose solid pellets into a pressurized homogeneous melt that is pumped through a shaping tool. Traditional analyses of the solids conveying stage assume the movement of an elastic solid plug at a fixed speed. However, not only the corresponding predictions fail considerably, but it is also well known that, at least in the initial screw turns, the flow of loose individual pellets takes place. This study follows previous efforts to predict the characteristics of such a flow using the discrete element method. The model considers the development of normal and tangential forces resulting from the inelastic collisions between the pellets and between them and the neighbouring metallic surfaces. The algorithm proposed here is shown to be capable of capturing detailed features of the granular flow. The predictions of velocities in the cross- and down-channel directions and of the coordination number are in good agreement with equivalent reported results. The effect of pellet size on the flow features is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.