Abstract

Parasitic helminths present one of the most pervasive challenges to grazing herbivores. Many macro-parasite transmission models focus on host physiological defence strategies, omitting more complex interactions between hosts and their environments. This work represents the first model that integrates both the behavioural and physiological elements of gastro-intestinal nematode transmission dynamics in a managed grazing system. A spatially explicit, individual-based, stochastic model is developed, that incorporates both the hosts’ immunological responses to parasitism, and key grazing behaviours including faecal avoidance. The results demonstrate that grazing behaviour affects both the timing and intensity of parasite outbreaks, through generating spatial heterogeneity in parasite risk and nutritional resources, and changing the timing of exposure to the parasites’ free-living stages. The influence of grazing behaviour varies with the host-parasite combination, dependent on the development times of different parasite species and variations in host immune response. Our outputs include the counterintuitive finding that under certain conditions perceived parasite avoidance behaviours (faecal avoidance) can increase parasite risk, for certain host-parasite combinations. Through incorporating the two-way interaction between infection dynamics and grazing behaviour, the potential benefits of parasite-induced anorexia are also demonstrated. Hosts with phenotypic plasticity in grazing behaviour, that make grazing decisions dependent on current parasite burden, can reduce infection with minimal loss of intake over the grazing season. This paper explores how both host behaviours and immunity influence macro-parasite transmission in a spatially and temporally heterogeneous environment. The magnitude and timing of parasite outbreaks is influenced by host immunity and behaviour, and the interactions between them; the incorporation of both regulatory processes is required to fully understand transmission dynamics. Understanding of both physiological and behavioural defence strategies will aid the development of novel approaches for control.

Highlights

  • Parasitic helminths present one of the most pervasive challenges to grazing herbivores [1]

  • Using values outlined in the main parameterisation section, the model successfully reproduces the parasite dynamics empirically observed in livestock grazing systems [7,47,48,49,50]

  • The influence of grazing behaviour varies with the hostparasite combination, with faecal avoidance behaviour being most beneficial when hosts have a limited ability to mount an immune response, and against parasites with fast on pasture development times

Read more

Summary

Introduction

Parasitic helminths present one of the most pervasive challenges to grazing herbivores [1]. The prevalence and intensity of parasite outbreaks is determined by a multitude of factors. These include the influence of host immunity on parasite establishment and fecundity, and the timing and frequency of contacts with parasites’ free-living infective stages. There is a propensity for macroparasite transmission models to focus only on host immunological defence strategies, omitting more complex interactions between hosts and their environment [2,3,4,5,6,7]. This paper explores how host behaviours influence macro-parasite transmission in a spatially and temporally heterogeneous environment. The focus is on gastro-intestinal nematodes (GINs), transmitted via the faecal oral route, within a controlled grazing system

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.