Abstract

ABSTRACTThe coherent supersonic oxygen supplying technology is now widely adopted in EAF steelmaking process. However, there has been limited research on the impact characteristics of the coherent supersonic jet. In this work, integrating theoretical modelling and numerical simulations, a hybrid computing model was developed to predict the penetration depth of the coherent and conventional supersonic jet. The results show that the lance height has much significant influence on the jet penetration depth, and the penetration depth of the coherent supersonic jet is much larger than that of the conventional supersonic jet at the same lance height. The k value reflects the velocity attenuation of the main supersonic jet, which is a key parameter of the hybrid computing model. Finally, the hybrid computing model and its modified models can well predict the penetration depth of the coherent and conventional supersonic jet with the error being no more than 3.92 pct.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call