Abstract

A mathematical model is presented to describe the variations of the water table in an unconfined aquifer due to time-varying recharge applied from four rectangular basins. The model is developed by solving the linearised Boussinesq equation using the extended finite Fourier cosine transform. The time-varying recharge rate is approximated by a number of piecewise linear elements of different lengths and slopes depending on the nature of the variation in recharge rate. Application of this model for the prediction of water table fluctuations and in the sensitivity analysis of various controlling parameters on the aquifer response is demonstrated in an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.