Abstract

Viscosity is an important property of mold fluxes for steel continuous casting. However, direct measurement of viscosity of multi-component systems in a broad range of temperatures and compositions is an onerous work and has some limitations. This paper developed a model using the back propagation (BP) neural network to describe the viscosity of fluorine-free mold fluxes. The BP neural network model was developed and validated using 70 experimental values of viscosity of fluorine-free mold fluxes CaO-SiO2-Al2O3-B2O3-Na2O-TiO2-MgO-Li2O-MnO-ZrO2; 51 of them were used for developing the neural network model and the rest 19 viscosity data for the model validation. Calculated viscosities were in a good agreement with the experimental data. Based on the developed model, the effects of temperature and composition on the viscosity of fluorine-free fluxes were predicted and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call