Abstract

Abstract This paper proposes a hydraulic model based on the Euler turbine equations suitable for the purpose of grid integration studies of variable speed hydropower (VSHP). The work was motivated by the need to assess how the dynamic performance might change when a hydropower plant is operated at variable speed. The Euler model considers the water flow dependency on the turbine rotational speed and calculates the turbine power as a non-linear function of water flow, turbine rotational speed and guide vane opening. A waterway model is included, based on the 1-D momentum and continuity balance for a water-filled elementary pipe to simulate water hammer, mass oscillation and tunnel losses. These detailed and accurate models are necessary for recognising possible limitations in the hydraulic system, to model the turbine power and rotational speed correctly and thereby to be able to maximise power delivery for system control purposes. All Euler model parameters can be derived from the physical dimensions of the turbine and waterway, ensuring easy implementation. State-space representation of the Euler model is approximated by utilising a lumped-parameter equivalent of the penstock dynamics. Dynamic simulations and eigenvalue analysis show the strength of the Euler model compared to conventional hydropower models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call