Abstract

The Mackenzie River has several anomalous deep scour holes in a number of river channels in its delta. Proposed gas pipeline crossings have renewed interest in studying the stability of these scour holes. The main goal of this research project was to study flow velocity and bed shear stress distributions for a 30 m deep hole in the East Channel of the Mackenzie Delta as a first step toward assessing the stability of the scour hole and the risk of its migration during various flow conditions. In this study, a three-dimensional (3D) finite element flow model, FLUENT, using the renormalization group (RNG) k-ε turbulence model (where k is the turbulent kinetic energy and ε is the turbulence dissipation rate) was set up for the scour hole and calibrated using detailed measurements of 3D flow velocities, obtained with an acoustic doppler current profiler. The numerical model was then applied to predict flow velocity and bed shear stress distributions in and around the scour hole for three flow conditions (720, 1000, and 1400 m3/s). Results indicate that two vortices are formed in the river elbow above the scour hole. As the flow rate changed, the sizes of the vortices varied. The region upstream of the hole experienced the greatest magnitudes of bed shear stress.Key words: computational fluid dynamics, finite element, bed shear stress, deep hole, flow reversal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call