Abstract

In this paper, the thermo-viscoplastic behaviour of DH-36 and Weldox-460-E steels is analyzed at wide ranges of strain rates and temperatures. These materials are commonly used for naval applications. Thus, they may be subjected to a wide range of exploitation temperatures and at the same time to high strain rates due to accidental impact or explosion. The thermo-viscoplastic behaviour of these materials has been modeled by application of RK ( Rusinek–Klepaczko) constitutive relation. The predictions obtained using RK constitutive relation have been compared with JC ( Johnson–Cook) and PB ( Physical Base) constitutive relations with use of the experimental results reported in the works of Nemat-Nasser and Guo [Nemat-Nasser, S., Guo, W.G., 2003. Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures. Mech. Mat. 35, 1023–1047] and Borvik et al. [Børvik, T., Hopperstad, O.S., Berstad, T., Langseth, M., 2001. A computational model of viscoplasticity and ductile damage for impact and penetration. Eur. J. Solid. Mech. A. 20, 685–712]. For both metals, a satisfactory agreement is reported between the experimental results and the analytical predictions using RK model at wide ranges of strain rates and temperatures (10 −3 s −1 to 10 4 s −1, and 77 K to about 1000 K). Especially for high strain rate level, the predictions of RK model are notably more precise than those predictions obtained using PB and JC models. This proof converts RK model in suitable for modeling impact problems. Finally, numerical simulations of perforation process of DH-36 and Weldox 460-E steel plates impacted by conical non-deformable projectiles have been carried out using RK and JC models. Numerical results using FE simulations have revealed substantial influence of the constitutive relation concerning the ballistic limit, residual velocity and failure time predictions for the same initial and boundary conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.