Abstract

The new generations of nano-devices successfully apply with great promise as drug carriers in the treatment of different diseases. The proposed model aims to determine the pharmacological targets and evaluate the bio-safety of usefulness of carbon nanotube conjugated with two different antiviral compounds, Acetylcholine and Ravastigmine, for treating Alzheimer disease. We also obtain the medicinal model mathematically to evaluate the interaction energy arising from encapsulation of each antiviral compound inside the single-walled carbon nanotube. Acetylcholine is modelled as two-connected spheres, while Ravastigmine has two possible structures which are an ellipsoid and cylinder, all interacting with the interior wall of single-walled carbon nanotubes with variant radii rc . Our calculations show that the single-walled carbon nanotube of radius rc greater than 3.391 Å that will accept both drugs which are quite closer to the recent findings.

Highlights

  • Research in nanobiotechnology has rapidly increased since the development of molecular dynamic simulations (MDSs) in 1980, X-ray crystallography and scanning tunneling microscope in 1982

  • Acetylcholine is modelled as two-connected spheres, while Ravastigmine has two possible structures which are an ellipsoid and cylinder, all interacting with the interior wall of single-walled carbon nanotubes with variant radii rc

  • We apply Lennard-Jones potential and the discrete-continuum approach to evaluate the interaction energy of each drug interacting inside SWCNTs with variant radii rc

Read more

Summary

Introduction

Research in nanobiotechnology has rapidly increased since the development of molecular dynamic simulations (MDSs) in 1980, X-ray crystallography and scanning tunneling microscope in 1982. Nanobiotechnology is an interdisciplinary area combining the molecular biological approach with the micronanotechnology. This combination aims to design and develop new devices by ma-

Al Garalleh DOI
Al Garalleh
Mathematical Model
Insertion of ACh as Two-Connected Spheres into SWCNT
An Ellipsoid Model
Cylindrical Model
Results and Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.