Abstract

The environmental sustainability of the battery-powered electric ferry (BEF) depends on the share of renewable energy sources (RESs) in the power system. The BEFs impose significant load on the power grid and it is challenging to achieve their sustainability in isolated energy systems (IES), such as islands that have limited land available for integrating RESs. The proposed solution for achieving the sustainability of BEF in such challenging environments is the integration of a standalone onshore charging station (OCS) powered with a hybrid offshore RES. The nexus between the electricity supply of the offshore photovoltaic (PV) and wind power systems and the electricity demand of BEF can reduce the required capacity of the energy storage systems (ESSs) and improve the environmental and economic performance of the standalone OCS. This study considered 45 standalone OCS scenarios to select the share of the offshore RES that matches the BEF electricity demand and improves the economic and environmental indicators of the standalone OCS. The model included characterisation of the offshore RES electricity supply, BEF electricity demand, critical excess of electricity production (CEEP), critical deficit of electricity production (CDEP) and costs. Simulations were conducted in EnergyPLAN, which used a high-resolution spatiotemporal dataset (8784 h) for the Island of Cres for 2030. The results confirmed that standalone OCS with the hybrid offshore RES provides a better match with BEF electricity demand compared to the scenarios based on an individual offshore RES.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call