Abstract

ABSTRACTThis paper focuses on how to extrapolate current knowledge of spent fuel matrix alteration processes from laboratory to repository conditions, i.e., the influence of changes in both the environmental conditions and the range of time scale considered. Therefore, a spent fuel matrix alteration model allowing the alteration rate evolution to be predicted as a function of both the host rock considered and evaluation time scale of interest is described.At present, the model assumes that alteration of the spent fuel will start when the groundwater reaches the solid surface and that only the radiolytic species of the groundwater (oxidants generated by α-radiation of spent fuel) will produce the surface oxidation process and subsequent matrix dissolution; O2, H2O2 and OH· are the species that react with UO2(s) for oxidation of the pellet surface. The dissolution process of the surface sites that are oxidized is modelled in two steps: first, a surface co-ordination of the oxidized layer with aqueous ligands and, second, detachment (dissolution) of the product species. Taking this mechanism into account, the model gives the evolution of the spent fuel matrix alteration rate over periods as long as 1,000,000 years.In this work the matrix alteration rate results obtained for two repository environments, granitic and argillaceous, will be presented. Furthermore, a sensitivity analysis study has been performed on the influence of the following variables: type of spent fuel considered, α-dose rate evolution, α-range in groundwater, carbonate and iron concentration in groundwater, H2 partial pressure, container time failure and specific surface area of the pellet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.