Abstract

The shoot-through phenomenon has not been fully discussed for high-power inverters with IGBTs. This is because a negative gate voltage is applied to IGBTs during off states. Recently, attention is paid to an improved gate driver with only a positive gate voltage in order to meet demands for simplification, integration, and reduction in power consumption as well as in cost of the gate driver. Moreover, the threshold voltage of the next-generation IGBT will decrease with microfabrication techniques of the gate structure. This will make the shoot-through phenomenon severer and degrade the inverter reliability with the next-generation IGBTs. The influence of the parasitic parameters in both the IGBT and circuit on the shoot-through mechanism has not been investigated so far.This paper clarifies the shoot-through mechanism and investigates the impact of the next generation IGBTs on the inverter reliability. The influence of the internal capacitance of IGBT including stray inductance on inverter reliability is experimentally confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.