Abstract

Abstract. We have developed an integrated assessment tool that can be used for evaluating the public health costs caused by the concentrations of fine particulate matter (PM2.5) in ambient air. The model can be used to assess the impacts of various alternative air quality abatement measures, policies and strategies. The model has been applied to evaluate the costs of the domestic emissions that influence the concentrations of PM2.5 in Finland in 2015. The model includes the impacts on human health; however, it does not address the impacts on climate change or the state of the environment. First, the national Finnish emissions were evaluated using the Finnish Regional Emission Scenarios (FRESs) model on a resolution of 250×250 m2 for the whole of Finland. Second, the atmospheric dispersion was analysed by using the chemical transport model, namely the System for Integrated modeLling of Atmospheric coMposition (SILAM) model, and the source receptor matrices contained in the FRES model. Third, the health impacts were assessed by combining the spatially resolved concentration and population data sets and by analysing the impacts for various health outcomes. Fourth, the economic impacts of the health outcomes were evaluated. The model can be used to evaluate the costs of the health damages for various emission source categories and for a unit of emissions of PM2.5. It was found that the economic benefits, in terms of avoided public health costs, were largest for measures that will reduce the emissions of (i) road transport, (ii) non-road vehicles and machinery, and (iii) residential wood combustion. The reduction in the precursor emissions of PM2.5 resulted in clearly lower benefits when compared with directly reducing the emissions of PM2.5. We have also designed a user-friendly, web-based assessment tool that is open access.

Highlights

  • Air pollution related to particulate matter (PM) can result in a wide variety of impacts

  • The overarching aim of this study is to develop an integrated assessment tool to evaluate the public health costs caused by the ambient air concentrations of fine particulate matter (PM2.5)

  • We have evaluated the atmospheric dispersion using the following two models: (i) the chemical transport model, namely the System for Integrated modeLling of Atmospheric coMposition (SILAM) model (e.g. Sofiev et al, 2006, 2015) and (ii) the source receptor matrices contained in the Finnish Regional Emission Scenarios (FRESs) model (Karvosenoja et al, 2011)

Read more

Summary

Introduction

Air pollution related to particulate matter (PM) can result in a wide variety of impacts. Prominent examples of these include the enhancement or mitigation of climate change, adverse impacts on the health of the population and various consequences for the environment (e.g. influence on biodiversity, acidification and eutrophication). Air pollution may cause the corrosion of materials and degradation of buildings and cultural heritage This study focuses on the impacts of air pollution on public health. The projected economic growth, urbanisation and the increased fraction of the senior population will increase the effects on public health in some regions in the future (e.g. OECD, 2016)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.