Abstract

An incremental mean-field model is developed for the prediction of transformation induced plasticity (TRIP) in multiphase steel. The partitioning of strain between softer and harder constituents is computed based on an elastic-plastic Mori–Tanaka approach that accounts for the progressive transformation of austenite into martensite. The latter transformation is predicted using an energy-balance criterion that is formulated at the level of individual austenite grains. The model has been tested against experimental data. Macroscopic stress-strain curves and rate of martensite formation have been measured on sheet samples subjected to various loading modes: uniaxial tension, simple shear, and (in-plane) uniaxial compression. These experiments were performed at 20 °C and the uniaxial tensile test was repeated at −30 °C. The mean-field model produces fair predictions of the macroscopic hardening resulting from TRIP on the condition that a sufficient proportion of the load is carried by the very hard martensite inclusions. Such prediction implies that one accounts for the stress heterogeneity across the ferrite-based matrix. At the same time, the model reproduces the elastic lattice strains and the plastic elongation which are measured within the phases by neutron diffraction and by image correlation in a scanning electron microscope, respectively. The model can be used in finite element simulations of forming processes which is illustrated in a study of necking of a cylindrical bar under uniaxial tension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call