Abstract

A three-dimensional finite element modelling of the laser surface nitriding of Ti-6A1-4V alloy is presented. Design capabilities of ANSYS parametric design language (APDL) were employed for this purpose. The model calculates transient temperature profiles, the dimensions of fusion zone and residual stresses in the laser surface nitrided Ti-6A1-4V alloy. Model simulations are compared with experimental results, acquired on-line using an ultra-high-speed shutter camera which is able to acquire well-contrasted images of the molten pool, and off-line using metallographical and X-ray diffraction analyses which show very good agreement. The results are further discussed to provide directions for reducing the residual stresses, as well as for feedback and process control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.