Abstract

Herein we present a refined version of Vito's two-sphere static model of the heart with pericardium and discuss its possible applications. The improvements we make on Vito's model are: (i) Vito assumed that the elastic materials which constitute the model ‘heart’ and ‘pericardium’ are isotropic; we relax this assumption to that of transverse-isotropy. (ii) Our analysis, which does not assume the existence of stored-energy functions, links the model directly to empirical stress-strain relations of suitable biaxial uniform-extension tests; two such stress-strain relations (one for the pericardium, one for the myocardium, both of which may be described by the same equation except for difference in the values of response parameters) now define the model completely, so we avoid altogether the difficult task of determining full-fledged constitutive equations for the pericardium and myocardium. As for applications, we contend that the concentric spheres in static equilibrium can be taken as a model of the left ventricle and pericardium at enddiastole. We show that the model when equipped with suitable stress-strain relations does give good fit to the pressure-volume data which Spotnitz et al. (1966, Circulation Res., 18, 49–66) obtained from excised canine left ventricles and to the pericardium data which Pegram et al. (1975, Circulation Res., 9, 707–714) obtained from closed chest, anaesthetized dogs. Three different empirical formulae were tried in the data-fitting as the equation that describes the requisite stress-strain relations. The ‘exponential law’ gave the best results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.