Abstract

This modelling study investigated the physicochemical and kinetic controls of the mineralogical evolutions of cementitious materials subject to accelerated atmospheric carbonation. Simulations are based on published experimental results on two samples, a hydrated C3S and a C-S-H paste, carbonated for 1 year at 55 % RH at 3 % CO2. For the C3S paste, reactive transport simulations accurately reproduced the mineralogical observations at different time intervals. However, for the C-S-H paste, in which significant cracks appeared, basis simulations could not reproduce the long-term carbonation extent. 2D simulations suggested that potential preexisting cracks could not fully explain the seemingly increasing carbonation rates. A final simulation using a simplified description of the crack appearance during carbonation gave the most accurate representation of the experimental results (degradation depths, mineralogy evolution). This demonstrates that, to accurately estimate the durability of cementitious materials subject to carbonation under dry conditions, coupled geochemical-mechanical descriptions are required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.