Abstract

Existing literature data have been used to model the steam reforming of ethanol on catalytic honeycombs coated with Rh-Pd/CeO2, which have shown an excellent performance and robustness for the production of hydrogen under realistic conditions. In this article, a fully 3D non-isothermal model is presented, where the reactions of ethanol decomposition, water gas shift, and methane steam reforming have been modelled under different operational pressures (1–10 bar) and temperatures (500–1200 K) at a steam to carbon ratio of S/C = 3 and a space time of W/F between 2·10−3 and 3 kg h Lliq−1. According to the modelling results, a maximum hydrogen yield of 80% is achieved at a working temperature of 1150 K and a pressure of 4 bar at S/C = 3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call