Abstract

In the course of photoisomerization, polymethine cyanines as well as stilbene and its derivates decay from the S 1 potential energy minimum, corresponding to the perpendicular geometry, to yield either cis or trans ground-state molecules. The fraction of cis isomers obtained, α, spans a larger range of values for symmetric cyanines than for stilbene derivatives. It is argued that such different behaviour for the two classes of compounds should be traceable to the electronically different nature of their S 1 perp species. Making use of radiationless transition theory results, it is shown the relative location of the S 1 minimum and S 0 maximum along the internal rotation coordinate is crucial to the evaluation of α: even small differences between these critical twisting angles, which are more reasonably expected for polymethine cyanines than for stilbene-like compounds, may cause strong deviations from equipartitioning (α=0.5).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.