Abstract

Abstract A 1D mathematical model for the computation of the temperature on the surface of cylindrical logs, tsr, and the non-stationary temperature distribution along the radiuses of logs subjected to freezing and subsequent defrosting at convective exponentially changing boundary conditions has been suggested. The model includes mathematical descriptions of the thermal conductivity in radial direction, λr, the effective specific heat capacity, ce, and the density, ρ, of the non-frozen and frozen wood, and also of the heat transfer coefficient between the surrounding air environment and the radial direction of horizontally situated logs, αr. With the help of the model, computations have been carried out for the determination of αr, tsr, λsr, and 1D temperature distribution along the radiuses of beech logs with diameters of 0.24 m, initial temperature 20 °C, and moisture content 0.4 kg·kg-1, 0.8 kg·kg-1, and 1.2 kg·kg-1, during their freezing at -20 °C, and during subsequent thawing at 20 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.